Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions.

نویسندگان

  • R Fernández-Chacón
  • T C Südhof
چکیده

In vertebrates, secretory carrier membrane proteins (SCAMPs) 1-3 constitute a family of putative membrane-trafficking proteins composed of cytoplasmic N-terminal sequences with NPF repeats, four central transmembrane regions (TMRs), and a cytoplasmic tail. SCAMPs probably function in endocytosis by recruiting EH-domain proteins to the N-terminal NPF repeats but may have additional functions mediated by their other sequences. We now demonstrate that SCAMPs form a much larger and more heterogeneous protein family than envisioned previously, with an evolutionary conservation extending to invertebrates and plants. Two novel vertebrate SCAMPs (SCAMPs 4 and 5), single SCAMP genes in Caenorhabditis elegans and Drosophila melanogaster, and multiple SCAMPs in Arabidopsis thaliana were identified. Interestingly, the novel SCAMPs 4 and 5 lack the N-terminal NPF repeats that are highly conserved in all other SCAMPs. RNA and Western blotting experiments showed that SCAMPs 1-4 are ubiquitously coexpressed, whereas SCAMP 5 is only detectable in brain where it is expressed late in development coincident with the elaboration of mature synapses. Immunocytochemistry revealed that SCAMP 5 exhibits a synaptic localization, and subcellular fractionations demonstrated that SCAMP 5 is highly enriched in synaptic vesicles. Our studies characterize SCAMPs as a heterogeneous family of putative trafficking proteins composed of three isoforms that are primarily synthesized outside of neurons (SCAMPs 2-4), one isoform that is ubiquitously expressed but highly concentrated on synaptic vesicles (SCAMP 1), and one brain-specific isoform primarily localized to synaptic vesicles (SCAMP 5). The conservation of the TMRs in all SCAMPs with the variable presence of N-terminal NPF repeats suggests that in addition to the role of some SCAMPs in endocytosis mediated by their NPF repeats, all SCAMPs perform a "core" function in membrane traffic mediated by their TMRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The secretory carrier membrane protein family: structure and membrane topology.

Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal ho...

متن کامل

Three mammalian SCAMPs (secretory carrier membrane proteins) are highly related products of distinct genes having similar subcellular distributions.

The primary structures of three human forms of secretory carrier membrane proteins (SCAMPs) have been deduced from full-length clones isolated from a HeLa cell cDNA library and confirmed by a combination of comparison to expressed sequence tags, microsequencing of purified protein, and in vitro transcription and translation. The structures indicated that SCAMPs are highly related products of di...

متن کامل

Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface.

Secretory carrier membrane proteins (SCAMPs) 1-4 are ubiquitously expressed and are major components of the eukaryotic cell surface recycling system. We investigated whether different SCAMPs function along distinct pathways and whether they behave like itinerant cargoes or less mobile trafficking machinery. In NRK cells, we show by immunofluorescence microscopy that different SCAMPs are concent...

متن کامل

Two Rab proteins, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles.

The tubulovesicles of gastric parietal cells sequester H+/K+-ATPase molecules within resting parietal cells. Stimulation of parietal cell secretion elicits delivery of intracellular H+/K+-ATPase to the apically oriented secretory canaliculus. Previous investigations have suggested that this process requires the regulated fusion of intracellular tubulovesicles with the canalicular target membran...

متن کامل

Evidence for colocalization and interaction between 37 and 39 kDa isoforms of secretory carrier membrane proteins (SCAMPs).

Secretory carrier membrane proteins (SCAMPs) are proteins of post-Golgi recycling carriers, including regulated secretory organelles. The two major size variants, SCAMP1 (37 kDa) and SCAMP2 (39 kDa), extensively colocalize in membranes of fibroblasts and parotid acinar cells based on immunocytochemistry and velocity centrifugation, although the relative amounts of each variant may differ in sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 21  شماره 

صفحات  -

تاریخ انتشار 2000